AGU 2015

We had three presentations at this years AGU fall meeting in San Francisco. Find the posters and presentations as PDFs here (the copyright is with the authors):

Advertisements

What Four Decades of Earth Observation Tell us about Land Degradation in the Sahel

From: Mbow, C.; Brandt, M.; Ouedraogo, I.; de Leeuw, J.; Marshall, M. What Four Decades of Earth Observation Tell Us about Land Degradation in the Sahel? Remote Sens. 2015, 7, 4048-4067.

Land degradation mechanisms are related to two main categories, one related to climate change and one associated with local human impact, mostly land use change such as expansion of cultivation, agricultural intensification, overgrazing and overuse of woody vegetation. Land degradation characteristics, triggers and human influence are manifold and interrelated. Some of the indicators can be monitored using Earth Observation techniques (underlined in red):

1

During the last four decades, the Sahel was affected by below-normal precipitation with two severe drought periods in 1972–73 and in 1983–84. Because of this negative climate trend, many studies prioritized the Sahel “crisis” in terms of productivity loss and land degradation. These negative perceptions have been opposed with recent findings of improved greenness mostly in relation to recent improvement in rainfall.

cover1

The assessment of land degradation and quantifying its effects on land productivity have been both a scientific and political challenge. After four decades of Earth Observation applications, little agreement has been gained on the magnitude and direction of land degradation in the Sahel. The number of Earth Observation datasets and methods, biophysical and social drivers and the complexity of interactions make it difficult to apply aggregated Earth Observation indices for these non-linear processes. Hence, while many studies stress that the Sahel is greening, others indicate no trend or browning. The different generations of satellite sensors, the granularity of studies, the study period, the applied indices and the assumptions and/or computational methods impact these trends.

4

tab

While there is a clearly positive trend in biomass production at Sahel scale, a loss in biodiversity and locally encroaching barren land are observed at the same time. Multi-scale Earth Observation analyses show that neither the desertification nor the greening paradigms can be generalized, as both attempt to simplify a very complex reality. Heterogeneity is an issue of scale, and very coarse-scaled vegetation trend analyses reveal a greening Sahel. However, locally-scaled studies are not uniform, observing greening and degradation at the same time.

We suggest several improvements: (1) harmonize time-series data, (2) promote knowledge networks, (3) improve data-access, (4) fill data gaps, (5) agree on scales and assumptions, (6) set up a denser network of long-term fields-surveys and (7) consider local perceptions and social dynamics, as local people’s perception of land degradation/improvements often disagree with Earth Observation analyses.

Thus, to allow multiple perspectives and avoid erroneous interpretations caused by data quality/scale issues/generalizations, we recommend combining multiple data sources at multiple scales. Furthermore, we underline the relevance of field data and experience, and results achieved by remote sensing techniques should not be interpreted without contextual knowledge.

Download the full article here: Paper at MDPI

see also:

Knauer, K., Gessner, U., Dech, S., Kuenzer, C., 2014. Remote sensing of vegetation dynamics in West Africa. International Journal of Remote Sensing 35, 6357–6396. doi:10.1080/01431161.2014.954062

Modeling Soil and Woody Vegetation in the Senegalese Sahel in the Context of Environmental Change

We have another interesting article about environmental change in the Sahel online. For this article, we used a Random Forest classifier and remote sensing products, to model a soil map in the Senegalese Sahel. If people are interested, I can put the R code online.

Brandt, M.; Grau, T.; Mbow, C.; Samimi, C. Modeling Soil and Woody Vegetation in the Senegalese Sahel in the Context of Environmental Change. Land 20143, 770-792.

it’s open access:

http://www.mdpi.com/2073-445X/3/3/770

Abstract: Climatic stress and anthropogenic disturbances have caused significant environmental changes in the Sahel. In this context, the importance of soil is often underrepresented. Thus, we analyze and discuss the interdependency of soil and vegetation by classifying soil types and its woody cover for a region in the Senegalese Ferlo. Clustering of 28 soil parameters led to four soil types which correspond with local Wolof denotations: Dek, Bowel, Dior and Bardial. The soil types were confirmed by a Non-metric Multidimensional-Scaling (NMDS) ordination and extrapolated via a Random Forest classifier using six significant variables derived from Landsat imagery and a digital elevation model (out-of-bag error rate: 7.3%). In addition, canopy cover was modeled using Landsat and a Reduced-Major-Axis (RMA) regression (R2 = 0.81). A woody vegetation survey showed that every soil type has its own species composition. However, 29% of Bowel regions are deforested (i.e., degraded) and interviews revealed extensive environmental changes and a strong decline and local extinction of woody species. The differences between the soil types are significant, showing that vegetation changes (i.e., degradation and greening), resilience to climatic stress and human activities largely depend on soil properties. We highlight that spatial heterogeneity is an important aspect when dealing with environmental changes in the Sahel, and local knowledge can be well used to classify spatial units by means of public Earth observation data.

 

Environmental change in time series – An interdisciplinary study in the Sahel of Mali and Senegal

Our next article is now online in the Journal of Arid Environments:

It is available here: http://www.sciencedirect.com/science/article/pii/S0140196314000536

Abstract: Climatic changes and human activities have caused major environmental change in the Sahel. Remote sensing studies detect various vegetation trends; however, explanations are rarely studied in detail. We present a methodology using time series, high-resolution imagery and fieldwork to validate trend analyses for two regions in the Sahel of Mali and Senegal. Both study areas show significant greening trends from 1982 to 2010. Reasons can be very site-specific, but several factors are valid for both research areas: (1) farmer-managed agro-forestry, (2) planting programs and protection laws, (3) widespread dispersion of robust species, which replace the former diverse woody vegetation and simulate a greening which conceals a shift in biodiversity and (4) an increase of annual rainfall. However, the situation is still far from the pre-drought conditions, which are reconstructed by Corona imagery (1965) and interviews with the local population. Rather a transformation is observed: a decrease in natural vegetation, tree density and diversity. Reasons are climatic and anthropogenic: (1) drought events, less rain and higher temperatures, (2) increased demand for cropping areas and wood, especially in times of droughts. Our example validates that climatic factors are important drivers of change, but much of today’s environment and vegetation composition is controlled by humans.